Optimal Synthesis of Four-Bar Linkage Path Generation through Evolutionary Computation with a Novel Constraint Handling Technique

Author:

Sleesongsom Suwin1ORCID,Bureerat Sujin2ORCID

Affiliation:

1. Department of Aeronautical Engineering, International Academy of Aviation Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

2. Sustainable and Infrastructure Research and Development Center, Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand

Abstract

This paper presents a novel constraint handling technique for optimum path generation of four-bar linkages using evolutionary algorithms (EAs). Usually, the design problem is assigned to minimize the error between desired and obtained coupler curves with penalty constraints. It is found that the currently used constraint handling technique is rather inefficient. In this work, we propose a new technique, termed a path repairing technique, to deal with the constraints for both input crank rotation and Grashof criterion. Three traditional path generation test problems are used to test the proposed technique. Metaheuristic algorithms, namely, artificial bee colony optimization (ABC), adaptive differential evolution with optional external archive (JADE), population-based incremental learning (PBIL), teaching-learning-based optimization (TLBO), real-code ant colony optimization (ACOR), a grey wolf optimizer (GWO), and a sine cosine algorithm (SCA), are applied for finding the optimum solutions. The results show that new technique is a superior constraint handling technique while TLBO is the best method for synthesizing four-bar linkages.

Funder

King Mongkut’s Institute of Technology Ladkrabang

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3