Numerical Simulation and Stability Study of Natural Convection in an Inclined Rectangular Cavity

Author:

Dou Hua-Shu1,Jiang Gang1,Lei Chengwang2ORCID

Affiliation:

1. Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. School of Civil Engineering, The University of Sydney, NSW 2006, Australia

Abstract

This paper examines the process of instability of natural convection in an inclined cavity based on numerical simulations. The energy gradient method is employed to analyze the physics of the flow instability in natural convection. It is found that the maximum value of the energy gradient function in the flow field correlates well with the location where flow instability occurs. Meanwhile, the effects of the flow time, the plate length, and the inclination angle on the instability have also been discussed. It is observed that the locations of instabilities migrate right as the flow time increased. With the increase of plate length, the onset time of the instability on the top wall of the cavity decreases gradually and the locations of instabilities move to the right side. Furthermore, the locations of instability move left with the increase of the inclination angle in a certain range. However, these positions move right as the accumulation of the heat flux is restrained in the lower left corner of the cavity once the inclination angle exceeds a certain range.

Funder

Science Foundation of Zhejiang Sci-Tech University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3