Mathematical Modeling of Multiscale Network Traffic Combination Prediction Based on Fuzzy Support Vector Machine

Author:

Zhang Feng1ORCID

Affiliation:

1. Anhui Communications Vocational and Technical College, Hefei, China

Abstract

In the process of multiscale network traffic prediction using a single model, the results are often single, resulting in a decline in the accuracy of multiscale network traffic prediction. In order to solve this problem effectively, a mathematical modeling method of multiscale network traffic combination prediction based on fuzzy SVM is proposed. Firstly, according to the multiscale network approximation signal, the multiscale network traffic feature function is constructed to complete the multiscale network traffic feature extraction. Secondly, according to the feature extraction results, the fuzzy membership function is introduced into the SVM, and the fuzzy SVM is used to classify the multiscale network traffic. Finally, based on the traffic classification results, the combination prediction of multiscale network traffic is completed by combining the grey Verhulst prediction model with the GNN model. The experimental results show that the prediction accuracy of this method for multiscale network traffic is higher, and the prediction accuracy can always maintain above 95%, and the MSE and MAE values are relatively low.

Funder

Key Natural Science Research Projects in Anhui Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference30 articles.

1. Cyber-attack detection and mitigation using SVM for 5G network;S. Y. Alshunaifi;Computers, Materials and Continua,2022

2. Simulation of network traffic prediction model based on deep neural network;R. J. Zhou;Computer Simulation,2021

3. Efficient partitioning of conforming virtual element discretizations for large scale discrete fracture network flow parallel solvers

4. Network flow methods for the minimum covariate imbalance problem

5. HyDroid: android malware detection using network flow combined with permissions and intent filters;A. Boukhamla;International Journal of Mobile Communications,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3