Time-Dependent Anabolic Response of hMSC-Derived Cartilage Grafts to Hydrostatic Pressure

Author:

Chariyev-Prinz Farhad12ORCID,Neto Nuno12ORCID,Monaghan Michael G.123ORCID,Kelly Daniel J.123ORCID

Affiliation:

1. Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland

2. Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland

3. Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland

Abstract

It is generally accepted that the application of hydrostatic pressure (HP) is beneficial for MSC chondrogenesis. There is, however, evidence to suggest that the timing of application might determine its impact on cell fate and tissue development. Furthermore, understanding how the maturity of engineered cartilage affects its response to the application of HP can provide critical insight into determining when such a graft is ready for in vivo implantation into a mechanically loaded environment. In this study, we systematically examined chondrogenic maturation of hMSCs over 35 days in the presence of TGF-β3 in vitro. At specific timepoints, the response of hMSCs to the application of HP following the removal of TGF-β3 was assessed; this partially models conditions such grafts will experience in vivo upon implantation. In free swelling culture, the expression of chondrogenic (COL2A1 and ACAN) and hypertrophic (COL10A1) markers increased with time. At early timepoints, the expression of such markers continued to increase following TGF-β3 withdrawal; however, this was not observed after prolonged periods of chondrogenic priming (35 days). Interestingly, the application of HP was only beneficial after 35 days of chondrogenic priming, where it enhanced sGAG synthesis and improved key chondrogenic gene ratios. It was also found that HP can facilitate a metabolic shift towards oxidative phosphorylation, which can be viewed as a hallmark of successfully differentiating MSCs. These results point to the importance of mechanical loading as a key stimulus for maintaining a chondrogenic phenotype once MSCs are removed from chemically defined culture conditions.

Funder

Horizon 2020

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3