The Influence of Molecular Structure Modifications on Vibrational Properties of Some Beta Blockers: A Combined Raman and DFT Study

Author:

Farcaș A.1,Iacoviță C.2,Vințeler E.3,Chiș V.3,Știufiuc R.2,Lucaciu C. M.2

Affiliation:

1. Department of Mathematics and Computer Science, “Iuliu Hatieganu” University of Medicine and Pharmacy, L. Pasteur 6, 400349 Cluj-Napoca, Romania

2. Department of Pharmaceutical Physics-Biophysics, “Iuliu Hatieganu” University of Medicine and Pharmacy, L. Pasteur 6, 400349 Cluj-Napoca, Romania

3. Faculty of Physics, “Babes-Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania

Abstract

We report results of a systematic Raman, SERS, and DFT study on four beta blocking molecules: Atenolol, Metoprolol, Propranolol, and, for the first time reported in the literature, Bisoprolol. The choice of these molecules was motivated by the structural similarities between Atenolol, Bisoprolol, and Metoprolol on one hand and by their differences relative to Propranolol. The density functional theory (DFT) approach, using the B3LYP method at the 6-311+G(d,p) level of theory, has been employed for geometry optimization and vibration bands assignments. The obtained results highlight the major role played by the central aromatic ring whose vibrations dominate the Raman spectra in all compounds. While the phenyl group vibrations dominate the Raman spectrum in the case of Atenolol, Bisoprolol, and Metoprolol, the spectrum of Propranolol presents high intensity vibrations of the naphthyl group. SERS performed on gold and silver colloids, at various pH conditions, revealed a higher sensitivity for Propranolol detection. The pH dependence of the spectrum indicates that the studied beta blockers attach themselves to the metal nanoparticles in a protonated form. The molecular adsorption geometry on metal nanoparticles surface has been evaluated by using the experimental SER spectra and the quantum chemical calculations.

Publisher

Hindawi Limited

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3