Robust Real-Time Traffic Surveillance with Deep Learning

Author:

Fernández Jessica1,Cañas José M.1ORCID,Fernández Vanessa1,Paniego Sergio1ORCID

Affiliation:

1. Universidad Rey Juan Carlos, Móstoles, Spain

Abstract

Real-time vehicle monitoring in highways, roads, and streets may provide useful data both for infrastructure planning and for traffic management in general. Even though it is a classic research area in computer vision, advances in neural networks for object detection and classification, especially in the last years, made this area even more appealing due to the effectiveness of these methods. This study presents TrafficSensor, a system that employs deep learning techniques for automatic vehicle tracking and classification on highways using a calibrated and fixed camera. A new traffic image dataset was created to train the models, which includes real traffic images in poor lightning or weather conditions and low-resolution images. The proposed system consists mainly of two modules, first one responsible of vehicle detection and classification and a second one for vehicle tracking. For the first module, several neural models were tested and objectively compared, and finally, the YOLOv3 and YOLOv4-based network trained on the new traffic dataset were selected. The second module combines a simple spatial association algorithm with a more sophisticated KLT (Kanade–Lucas–Tomasi) tracker to follow the vehicles on the road. Several experiments have been conducted on challenging traffic videos in order to validate the system with real data. Experimental results show that the proposed system is able to successfully detect, track, and classify vehicles traveling on a highway on real time.

Funder

Comunidad de Madrid

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Verifiable Privacy-Preserving Image Retrieval in Multi-Owner Multi-User Settings;IEEE Transactions on Emerging Topics in Computational Intelligence;2024-04

2. On the Impact of Resolution in Fashion Attribute-based Re- identification;2024 IEEE International Conference on Big Data and Smart Computing (BigComp);2024-02-18

3. Real-Time Vehicle Detection for Traffic Monitoring: A Deep Learning Approach;Data and Metadata;2024-01-01

4. Lightweight Sheep Head Detection and Dynamic Counting Method Based on Neural Network;Animals;2023-11-09

5. Synthesizing Traffic Datasets Using Graph Neural Networks;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3