An Optimization Framework of Multiobjective Artificial Bee Colony Algorithm Based on the MOEA Framework

Author:

Huo Jiuyuan12ORCID,Liu Liqun3ORCID

Affiliation:

1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

2. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

3. College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China

Abstract

The artificial bee colony (ABC) algorithm has become one of the popular optimization metaheuristics and has been proven to perform better than many state-of-the-art algorithms for dealing with complex multiobjective optimization problems. However, the multiobjective artificial bee colony (MOABC) algorithm has not been integrated into the common multiobjective optimization frameworks which provide the integrated environments for understanding, reusing, implementation, and comparison of multiobjective algorithms. Therefore, a unified, flexible, configurable, and user-friendly MOABC algorithm framework is presented which combines a multiobjective ABC algorithm named RMOABC and the multiobjective evolution algorithms (MOEA) framework in this paper. The multiobjective optimization framework aims at the development, experimentation, and study of metaheuristics for solving multiobjective optimization problems. The framework was tested on the Walking Fish Group test suite, and a many-objective water resource planning problem was utilized for verification and application. The experiment’s results showed the framework can deal with practical multiobjective optimization problems more effectively and flexibly, can provide comprehensive and reliable parameters sets, and can complete reference, comparison, and analysis tasks among multiple optimization algorithms.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3