Affiliation:
1. Graduate School, Space Engineering University, Beijing 101416, China
2. Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
Abstract
The minimum time interception problem with a tangent impulse whose direction is the same as the satellite’s velocity direction is studied based on the relative motion equations of elliptical orbits by the combination of analytical, numerical, and optimization methods. Firstly, the feasible domain of the true anomaly of the target under the fixed impulse point is given, and the interception solution is transformed into a univariate function only with respect to the target true anomaly by using the relative motion equation. On the basis of the above, the numerical solution of the function is obtained by the combination of incremental search and the false position method. Secondly, considering the initial drift when the impulse point is freely selected, the genetic algorithm-sequential quadratic programming (GA-SQP) combination optimization method is used to obtain the minimum time interception solution under the tangent impulse in a target motion cycle. Thirdly, under the high-precision orbit prediction (HPOP) model, the Nelder-Mead simplex method is used to optimize the impulse velocity and transfer time to obtain the accurate interception solution. Lastly, the effectiveness of the proposed method is verified by simulation examples.
Funder
National Defense Science and Technology Innovation Special Zone Project
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献