Performance Optimization and Modeling of Fine-Grained Irregular Communication in UPC

Author:

Lagravière Jérémie1,Langguth Johannes1ORCID,Prugger Martina2ORCID,Einkemmer Lukas2ORCID,Ha Phuong Hoai3ORCID,Cai Xing14ORCID

Affiliation:

1. Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway

2. University of Innsbruck, Technikerstraße 13, A-6020 Innsbruck, Austria

3. The Arctic University of Norway, NO-9037 Tromsø, Norway

4. University of Oslo, NO-0316 Oslo, Norway

Abstract

The Unified Parallel C (UPC) programming language offers parallelism via logically partitioned shared memory, which typically spans physically disjoint memory subsystems. One convenient feature of UPC is its ability to automatically execute between-thread data movement, such that the entire content of a shared data array appears to be freely accessible by all the threads. The programmer friendliness, however, can come at the cost of substantial performance penalties. This is especially true when indirectly indexing the elements of a shared array, for which the induced between-thread data communication can be irregular and have a fine-grained pattern. In this paper, we study performance enhancement strategies specifically targeting such fine-grained irregular communication in UPC. Starting from explicit thread privatization, continuing with block-wise communication, and arriving at message condensing and consolidation, we obtained considerable performance improvement of UPC programs that originally require fine-grained irregular communication. Besides the performance enhancement strategies, the main contribution of the present paper is to propose performance models for the different scenarios, in the form of quantifiable formulas that hinge on the actual volumes of various data movements plus a small number of easily obtainable hardware characteristic parameters. These performance models help to verify the enhancements obtained, while also providing insightful predictions of similar parallel implementations, not limited to UPC, that also involve between-thread or between-process irregular communication. As a further validation, we also apply our performance modeling methodology and hardware characteristic parameters to an existing UPC code for solving a 2D heat equation on a uniform mesh.

Funder

Horizon 2020 Framework Programme

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cost-aware Programming on Page-based Distributed Shared Memory;Journal of Information Processing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3