Affiliation:
1. ZARM, University of Bremen, Am Fallturm, 28359 Bremen, Germany
Abstract
Modern scientific space missions pose high requirements on the accuracy of the prediction and the analysis of satellite motion. On the one hand, accurate orbit propagation models are needed for the design and the preparation of a mission. On the other hand, these models are needed for the mission data analysis itself, thus allowing for the identification of unexpected disturbances, couplings, and noises which may affect the scientific signals. We present a numerical approach for Solar Radiation Pressure modelling, which is one of the main contributors for nongravitational disturbances for Earth orbiting satellites. The here introduced modelling approach allows for the inclusion of detailed spacecraft geometries, optical surface properties, and the variation of these optical surface properties (material degradation) during the mission lifetime. By using the geometry definition, surface property definitions, and mission definition of the French MICROSCOPE mission we highlight the benefit of an accurate Solar Radiation Pressure modelling versus conventional methods such as the Cannonball model or a Wing-Box approach. Our analysis shows that the implementation of a detailed satellite geometry and the consideration of changing surface properties allow for the detection of systematics which are not detectable by conventional models.
Funder
Deutsche Forschungsgemeinschaft
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献