Symplectic Principal Component Analysis: A New Method for Time Series Analysis

Author:

Lei Min1,Meng Guang1

Affiliation:

1. Institute of Vibration, Shock & Noise and State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200030, China

Abstract

Experimental data are often very complex since the underlying dynamical system may be unknown and the data may heavily be corrupted by noise. It is a crucial task to properly analyze data to get maximal information of the underlying dynamical system. This paper presents a novel principal component analysis (PCA) method based on symplectic geometry, called symplectic PCA (SPCA), to study nonlinear time series. Being nonlinear, it is different from the traditional PCA method based on linear singular value decomposition (SVD). It is thus perceived to be able to better represent nonlinear, especially chaotic data, than PCA. Using the chaotic Lorenz time series data, we show that this is indeed the case. Furthermore, we show that SPCA can conveniently reduce measurement noise.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3