A Segmented Signal Progression Model for the Modern Streetcar System

Author:

Wang Baojie12,Wang Wei12,Hu Xiaojian123,Li Xiaowei12

Affiliation:

1. Jiangsu Key Laboratory of Urban ITS, Southeast University, China

2. Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, China

3. Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems and Safety Control, China

Abstract

This paper is on the purpose of developing a segmented signal progression model for modern streetcar system. The new method is presented with the following features: (1) the control concept is based on the assumption of only one streetcar line operating along an arterial under a constant headway and no bandwidth demand for streetcar system signal progression; (2) the control unit is defined as a coordinated intersection group associated with several streetcar stations, and the control joints must be streetcar stations; (3) the objective function is built to ensure the two-way streetcar arrival times distributing within the available time of streetcar phase; (4) the available time of streetcar phase is determined by timing schemes, intersection structures, track locations, streetcar speeds, and vehicular accelerations; (5) the streetcar running speed is constant separately whether it is in upstream or downstream route; (6) the streetcar dwell time is preset according to historical data distribution or charging demand. The proposed method is experimentally examined in Hexi New City Streetcar Project in Nanjing, China. In the experimental results, the streetcar system operation and the progression impacts are shown to affect transit and vehicular traffic. The proposed model presents promising outcomes through the design of streetcar system segmented signal progression, in terms of ensuring high streetcar system efficiency and minimizing negative impacts on transit and vehicular traffic.

Funder

National High-Tech Research and Development Program of China

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3