Combined Effect of Compression Ratio and Fuel Injection Pressure on CI Engine Equipped with CRDi System Using Prosopis juliflora Methyl Ester/Diesel Blends

Author:

Ramesh T.1ORCID,Sathiyagnanam A. P.2ORCID,De Poures Melvin Victor3ORCID,Murugan P.4ORCID

Affiliation:

1. Department of Mechanical Engineering, Annamalai University, Annamalainagar, Chidambaram 608002, Tamil Nadu, India

2. Department of Mechanical Engineering, Government College of Engineering, Salem (Deputed from Annamalai University), Tamil Nadu, Salem 636011, India

3. Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai- 602105, Tamil Nadu, India

4. Department of Mechanical Engineering, Jimma Institute of Technology, Jimma University, Ethiopia

Abstract

The exhaustion of worldwide oil reserves has created an incipient need to find hopeful alternative fuels for the future. Substantial research has been done in this direction, and all studies by researchers have provided results that proved the growing potential of biofuel as a popular alternative in the CI engine. The current investigation explores the biofuel potential derived from the wasteland tree Prosopis juliflora (Karuvalam tree seeds). Experimentation was done using a monocylinder 4-stroke water-cooled six holes CRDi CI engine with electrical loading. The experiment was conducted at three proportions (10%, 20%, and 30% volume basis) of Prosopis juliflora Oil Methyl Ester (PJOME) with diesel using 3 parametric CRs (16, 17.5, and 19) along with three different fuel injection pressure (FIP) (400, 500, and 600 bar). The impact of CR and FIP on fuel utilization BTE, cylinder pressure, net heat release, and exhaust particulates was scrutinized and characterized. The test results demonstrated that increasing the compression ratio from 16 to 19 enhanced the in-cylinder pressure, net heat release (NHR), and BTE for all the (PJOME/Diesel) combinations. With an augmentation in the compression ratio from 16 to 19, carbon monoxide and unburnt hydrocarbon discharge diminished, but the nitrogen oxide discharges augmented. FIP also had an impact of increasing the pressures on the in-cylinder, NHR, brake thermal efficiency, and nitrogen oxide and reducing the emissions of smoke, CO, and UBHC. The current research shows that the use of B20 and CR16 and FIP 600 bar as a combination improved BTE by 33.21%, BSFC by 0.25 kg/kw-hr, cylinder pressure at the maximum to reach 69.28 bar, net heat release of 79.14 J/deg, and exhaust emissions such as UHC at 55 ppm, CO at 0.25%, smoke at 34.33%, and NOx at 2401 ppm. Finally, the BTE and NOx were slightly higher, and the UHC, CO, and smoke values were diminutive compared to other blends.

Publisher

Hindawi Limited

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3