Navigation and Positioning Analysis of Electric Inspection Robot Based on Improved SVM Algorithm

Author:

Li Yongfu1ORCID,Long Yingkai1ORCID,Du Mingming2ORCID,Jiang Xiping1ORCID,Liu Xianfu3ORCID

Affiliation:

1. State Grid Chongqing Electric Power Research Institute, Chongqing 401121, China

2. State Grid Chongqing Electric Power Company, Chongqing 400013, China

3. Nanjing Unitech Electric Power Co., Ltd, Nanjing 211100, China

Abstract

In order to improve the accuracy of electric inspection robot navigation and positioning, an improved SVM algorithm was proposed to improve the accuracy of inspection. The research focuses on sensor calibration technology, lane line detection and robot positioning technology, obstacle detection and tracking technology, and substation road scene understanding technology. The results show that the radar measurement results have great fluctuation and deviation due to the existence of noise, but the results are smoother after EKF estimation. Secondly, the accuracy of the improved SVM classifier in this paper is much higher than that of the traditional method, and the improvement effect is obvious.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3