In Vitro and In Vivo Evaluation of Sorghum (Sorghum bicolor L. Moench) Genotypes for Pre- and Post-attachment Resistance against Witchweed (Striga asiatica L. Kuntze)

Author:

Gwatidzo V. O.12,Rugare J. T.1ORCID,Mabasa S.1,Mandumbu R.3,Chipomho J.2,Chikuta S.4

Affiliation:

1. Department of Crop Science, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare, Zimbabwe

2. Department of Crop Science, Marondera University of Agricultural Sciences and Technology, CSC Campus Industrial Sites, 12 Longlands Road, Marondera, Zimbabwe

3. Department of Crop Science, Bindura University of Sciences and Education, 741 Chimurenga Road, Bindura, Zimbabwe

4. Department of Agriculture, Ministry of Agriculture, Chibombo, Zambia

Abstract

Sorghum (Sorghum bicolor L. Moench) production in sub-Saharan Africa is seriously constrained by both biotic and abiotic stresses. Among the biotic stresses is witchweed (Striga spp.), a noxious parasitic weed causing major damage in cereal crops, such as sorghum. However, resistance through reduced germination stimulant production or altered germination stimulant composition provides a sustainable and most effective way for managing the parasitic weeds. Laboratory and glasshouse experiments were conducted using seven (7) sorghum genotypes to evaluate their resistance or tolerance the witch weed (Striga asiatica L. Kuntze). The first experiment was a laboratory agar gel assay arranged in a completely randomized design with six (6) replications to evaluate the effects of the seven (7) sorghum genotypes on the production of strigolactones by determining the percentage germination and the furthest germination distance of the Striga seeds. The second experiment was a seven (7) (sorghum genotypes)∗two (2) (Striga treatments) factorial glasshouse experiment conducted to evaluate the effects of Striga on sorghum growth, physiological and yield components of sorghum, Striga syndrome rating, and number of Striga per plant. The genotypes showed a significant (p<0.05) difference in germination percentage and furthest germination of Striga seeds in the agar gel assay. Genotypes SV4, Mahube, and ICSV 111 IN showed the least germination percentage and lowest germination distance, implying that these varieties either produced low strigolactones or altered their composition. In contrast, Kuyuma, Wahi, SV2, and Macia caused high Striga seed germinations and high furthest germination distances, suggesting that these sorghum genotypes were susceptible to Striga infection. The sorghum × Striga × time interactions were significant (p<0.05) on sorghum height. It was found that the heights of sorghum genotypes ICSV 111 IN and Mahube were not altered by Striga infection, but the heights of Kuyuma, Macia, SV2, SV4, and Wahi were reduced by Striga infection. The interaction of sorghum∗Striga effects was significant (p<0.05) on chlorophyll fluorescence. Striga infection did not alter the chlorophyll content of ICSV 111 IN and SV4. The sorghum∗Striga interaction effects were significant (p<0.05) on head index, leaf biomass, leaf index, root biomass, root index, plant biomass, and root : shoot ratio. Assessing Striga tolerance based on sorghum heights, chlorophyll content, and root : shoot ratio parameters, it could be concluded that the sorghum genotypes Mahube, ICSV 111 IN, and SV4 tolerated Striga infection, whereas Kuyuma and SV2 could be susceptible.

Funder

Carnegie Cooperation of New York

Publisher

Hindawi Limited

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3