In Situ Sol-Gel Assembly of Graphitic Carbonitride Nanosheet-Supported Colloidal Binary Metal Sulfide into Nanosandwich-Like Multifunctional 3D Macroporous Aerogel Catalysts for Asymmetric Supercapacitor and Electrocatalytic Oxygen and Hydrogen Evolution

Author:

Parale Vinayak G.1ORCID,Kim Younghun1ORCID,Phadtare Varsha D.1ORCID,Kim Taehee1ORCID,Choi Haryeong1ORCID,Patil Umakant M.12ORCID,Park Hyung-Ho1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

2. Center for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kasaba Bawada, Kolhapur 416 006, India

Abstract

It is challenging to develop scalable and stable multifunctional catalysts for energy storage and conversion applications. To address the above challenges, we designed 3D macroporous nanosandwich-like aerogels using an in situ sol-gel assembly for 2D g-C3N4 nanosheet-supported NiCo2S4 nanoporous aerogels. The resultant in situ method not only assembles NiCo2S4 but also 2D g-C3N4 into the sandwich-like 3D network, allowing rapid ion and electron transport. The potential of g-C3N4 and NiCo2S4 in electrochemical energy storage and electrocatalysis is promising for improving its electrochemical activities. The synthesized 3D NiCo2S4/g-C3N4 (3%) composite aerogel electrode achieved a remarkable specific capacitance value, 1083 F·g-1 at 5 mA·cm-2 current density with 87.03% cyclic stability. Furthermore, the asymmetric electrochemical supercapacitor device was fabricated with a maximum specific energy of 43 Wh·kg-1, with outstanding electrochemical stability of about 97% over 10,000 charge/discharge cycles. In addition, NiCo2S4/g-C3N4 (3%) catalysts achieved 294 and 155 mV as oxygen and hydrogen evolution reaction overpotentials, respectively, at 20 and 10 mA·cm-2 current density values. This study provides a new method for the conversion of 2D sheets and 0D colloidal network into 3D macroporous nanocomposite aerogels in multifunctional applications.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3