Cellular Neural Network-Based Methods for Distributed Network Intrusion Detection

Author:

Xie Kang1,Yang Yixian12,Xin Yang2,Xia Guangsheng3

Affiliation:

1. College of Information Science and Engineering, Shandong University, Jinan 250100, China

2. Information Security Center, Beijing University of Posts and Telecommunications, Beijing 100876, China

3. National Cybernet Security Ltd., Beijing 100088, China

Abstract

According to the problems of current distributed architecture intrusion detection systems (DIDS), a new online distributed intrusion detection model based on cellular neural network (CNN) was proposed, in which discrete-time CNN (DTCNN) was used as weak classifier in each local node and state-controlled CNN (SCCNN) was used as global detection method, respectively. We further proposed a new method for design template parameters of SCCNN via solving Linear Matrix Inequality. Experimental results based on KDD CUP 99 dataset show its feasibility and effectiveness. Emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation which allows the distributed intrusion detection to be performed better.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. E-minBatch GraphSAGE: An Industrial Internet Attack Detection Model;Security and Communication Networks;2022-07-14

2. An Effective Fault-Tolerant Intrusion Detection System under Distributed Environment;Wireless Communications and Mobile Computing;2021-10-19

3. Cloud Data Center Intrusion Detection Model Based on Active Rules;2020 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS);2020-12-11

4. An Intelligent Evaluation Method to Analyze the Competitiveness of Airlines;Mathematical Problems in Engineering;2020-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3