A Novel Approach of Improving Battery Performance and Longevity of the Developed Electrically Assisted Triwheeler Vehicle by Implementing Torque Sensor Technology

Author:

Rashid Md. Jaber Al1,Rahman Ataur1,Siddique Abu Raihan Mohammad2ORCID,Azad A. K. M. Abdul Malek2

Affiliation:

1. CARC, BRAC University, Dhaka, Bangladesh

2. EEE Department, BRAC University, Dhaka, Bangladesh

Abstract

This paper presents a new approach to improving the battery performance and its longevity by the implementation of torque sensor pedal technology on the developed electric triwheeler vehicle (i.e., wheelchair). The paper has also discussed integration of the torque sensor technology with the overall electrical system of the vehicle. Incorporating the components of torque sensor technology reduces the human effort immensely by providing assistance from the battery bank to drive a hub motor while maneuvering the wheelchair using the torque sensor pedal. Field tests were carried out in three different stages, one with pedal, one with the throttle only, and with varying the load on the wheelchair, to distinguish the effect of load test on battery performance using the pedal. Results of the field tests reveal that the state of charge of batteries has been minimized using the pedal due to the contribution of the muscular energy of the user along with the battery energy to meet the total energy demand of the motor. Analyzing test results with the torque sensor pedal clarifies that the vehicle covers a longer distance, lessens power dissipation from the batteries, and reduces energy consumption from the batteries, which leads to improvement of the battery performance and its longevity ensuring sustainability of the electric vehicle.

Funder

IEEE SIGHT USA

Publisher

Hindawi Limited

Subject

Computer Science Applications,Mechanical Engineering,Automotive Engineering

Reference14 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3