A Novel Structure-Adaptive Fractional Bernoulli Grey Model for Solar Photovoltaic Forecasts

Author:

Huang Ying1ORCID,Huang Weilong2ORCID,Ding Song2ORCID

Affiliation:

1. Industrial and Commercial Bank of China, Hangzhou Branch, Hangzhou 310003, China

2. School of Economics, Zhejiang University of Finance and Economics, Hangzhou 310018, China

Abstract

Since the limitation of carbon emissions, China’s photovoltaic (PV) industry has developed vigorously, while some traditional heavy industries have been violently hit. Therefore, the industrial production data exhibits significant nonlinear and complexity characteristics, which may affect prediction accuracy, thus hindering the corresponding department’s decision-making. Consequently, a novel structure-adaptive fractional Bernoulli grey model is presented in this paper to surmount this toughie, and the core innovations can be summarized as follows. Initially, a novel time function term is utilized to depict the accumulative time effect, which can smoothly represent the dynamic variations and significantly strengthen the robustness of the new model. Besides, the fractional-order accumulation technique, which could effectively improve the predicting accuracy, is employed in the proposed model. Furthermore, the adaptability and generalizability of the proposed model can be enhanced by the self-adaptive parameters optimized by the Particle Swarm Optimization. For illustration and verification purposes, experiments on forecasting the annual output of Photovoltaic modules in China and the annual output of steel in Beijing are compared with a range of benchmarks, including the classic GM (1, 1), conventional econometric technology, and machine learning methods. And the results confirmed that the proposed model is superior to all benchmark models, which indicates that the novel model is indeed suitable for industrial production forecasting.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference60 articles.

1. Pathway to Net Zero Emissions;Dnv;Energy Transition Outlook,2021

2. Estimating Chinese energy-related CO2 emissions by employing a novel discrete grey prediction model

3. A novel discrete grey seasonal model and its applications

4. Renewables 2021: Analysis and Forecasts to 2026;I. Energy Agency,2021

5. U.S. Department Of Energy;U.S. Department;Solar Futures Study,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3