Transcriptome Profiling of IL-17A Preactivated Mesenchymal Stem Cells: A Comparative Study to Unmodified and IFN-γModified Mesenchymal Stem Cells

Author:

Sivanathan Kisha Nandini12ORCID,Rojas-Canales Darling12,Grey Shane T.3,Gronthos Stan45ORCID,Coates Patrick T.126

Affiliation:

1. School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia

2. Centre for Clinical and Experimental Transplantation, Royal Adelaide Hospital, Adelaide, SA, Australia

3. Transplantation Immunology Group, Garvan Institute of Medical Research, Sydney, NSW, Australia

4. South Australian Health and Medical Research Institute, Adelaide, SA, Australia

5. Mesenchymal Stem Cell Laboratory, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia

6. Central Northern Adelaide Renal Transplantation Service, Royal Adelaide Hospital, Adelaide, SA, Australia

Abstract

Human mesenchymal stem cells pretreatment with IL-17A (MSC-17) potently enhances T cell immunosuppression but not their immunogenicity, in addition to avidly promoting the induction of suppressive regulatory T cells. The aim of this study was to identify potential mechanisms by which human MSC-17 mediate their superior immunomodulatory function. Untreated-MSC (UT-MSC), IFN-γtreated MSC (MSC-γ), and MSC-17 were assessed for their gene expression profile by microarray. Significantly regulated genes were identified for their biological functions (Database for Annotation, Visualisation and Integrated Discovery, DAVID). Microarray analyses identified 1278 differentially regulated genes between MSC-γand UT-MSC and 67 genes between MSC-17 and UT-MSC. MSC-γwere enriched for genes involved in immune response, antigen processing and presentation, humoral response, and complement activation, consistent with increased MSC-γimmunogenicity. MSC-17 genes were associated with chemotaxis response, which may be involved in T cell recruitment for MSC-17 immunosuppression. MMP1, MMP13, and CXCL6 were highly and specifically expressed in MSC-17, which was further validated by real-time PCR. Thus, MMPs and chemokines may play a key role in mediating MSC-17 superior immunomodulatory function. MSC-17 represent a potential cellular therapy to suppress immunological T cell responses mediated by expression of an array of immunoregulatory molecules.

Funder

The Queen Elizabeth Hospital

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3