Affiliation:
1. Digital Interactive Media Laboratory, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
2. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
Abstract
Maximally stable extremal regions (MSER) is a state-of-the-art method in local feature detection. However, this method is sensitive to blurring because, in blurred images, the intensity values in region boundary will vary more slowly, and this will undermine the stability criterion that the MSER relies on. In this paper, we propose a method to improve MSER, making it more robust to image blurring. To find back the regions missed by MSER in the blurred image, we utilize the fact that the entropy of probability distribution function of intensity values increases rapidly when the local region expands across the boundary, while the entropy in the central part remains small. We use the entropy averaged by the regional area as a measure to reestimate regions missed by MSER. Experiments show that, when dealing with blurred images, the proposed method has better performance than the original MSER, with little extra computational effort.
Funder
Department of Education of Zhejiang Province
Subject
General Engineering,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献