Entropy-Based Maximally Stable Extremal Regions for Robust Feature Detection

Author:

Cai Huiwen1,Wang Xiaoyan2,Xia Ming2,Wang Yangsheng1

Affiliation:

1. Digital Interactive Media Laboratory, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

2. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China

Abstract

Maximally stable extremal regions (MSER) is a state-of-the-art method in local feature detection. However, this method is sensitive to blurring because, in blurred images, the intensity values in region boundary will vary more slowly, and this will undermine the stability criterion that the MSER relies on. In this paper, we propose a method to improve MSER, making it more robust to image blurring. To find back the regions missed by MSER in the blurred image, we utilize the fact that the entropy of probability distribution function of intensity values increases rapidly when the local region expands across the boundary, while the entropy in the central part remains small. We use the entropy averaged by the regional area as a measure to reestimate regions missed by MSER. Experiments show that, when dealing with blurred images, the proposed method has better performance than the original MSER, with little extra computational effort.

Funder

Department of Education of Zhejiang Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3