SRCIN1 Regulated by circCCDC66/miR-211 Is Upregulated and Promotes Cell Proliferation in Non-Small-Cell Lung Cancer

Author:

Hong Weijun1,Yu Suyun1,Zhuang Yaqing1,Zhang Qingqing1,Wang Jiqin2ORCID,Gao Xiwen1ORCID

Affiliation:

1. Department of Respiratory Medicine, Minhang Hospital, Fudan University, China

2. Department of Emergency Medicine, Minhang Hospital, Fudan University, China

Abstract

The incidence and mortality of lung cancer were extremely high. The present study showed that SRCIN1 was an oncogene in non-small-cell lung cancer (NSCLC). Public dataset analysis showed SRCIN1 was significantly overexpressed in NSCLC samples. Also, we found that NSCLC patients with higher SRCIN1 expression had shorter OS time by analyzing TCGA, Kaplan-Meier Plotter, GSE30219, GSE50081, and GSE19188 databases. Overexpression or knockdown of SRCIN1 significantly induced or reduced A549 and H1299 cell proliferation. Furthermore, we found SRCIN1 was directly targeted by miR-211. Overexpression or knockdown of miR-211 suppressed or induced SRCIN1 levels in NSCLC. Moreover, we found that miR-211 affected NSCLC cell proliferation through SRCIN1. Previous studies demonstrated that circRNAs could act as miRNA sponges in cancer cells. In this study, we showed that knockdown of circCCDC66 induced expression of miR-211. Luciferase assay demonstrated that miR-211 suppressed the activity of luciferase reporter-contained circCCDC66 sequences. Moreover, knockdown of circCCDC66 significantly inhibited SRCIN1 levels in both A549 and H1299 cells. These results showed that circCCDC66 acted as a miRNA sponge to affect the miR-211/SRCIN1 axis. Of note, we for the first time revealed that circCCDC66 suppression reduced cell proliferation by about 65% in A549 and by about 40% in H1299 cells. We thought this study could provide novel potential biomarkers for NSCLC.

Funder

Youth Fund of Minhang Hospital, Fudan University

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3