Synthesis, Crystal Structures, and Magnetic Properties of Ternary M(II)-Dicyanamide-hydroxypyridine Complexes

Author:

Zheng Ling-Ling1

Affiliation:

1. Guangzhou Vocational College of Technology & Business, 511442, China

Abstract

Three two-dimensional (2D) and 3D supramolecular coordination architectures based on ternary M(II)-dicyanamide-2-hydroxypyridine systems, [Co(hmpH)2(dca)2] (1), [Cu(hmpH)2(dca)2] (2), and [Mn(hepH)2(dca)2] (3) (dca = dicyanamide, hmpH = 2-(hydroxymethyl)pyridine, hepH = 2-(hydroxyethyl)pyridine), have been synthesized. 1 is a mononuclear Co(II) complex. The mononuclear units are interlinked into a 2D (4,4) hydrogen-bonded layer via O–HN hydrogen bonds between the hydroxyl groups and the noncoordinating nitrile ends. These 2D layers are further extended into a 3D supramolecular architecture via the interlayer pyridyl-pyridyl stacking interaction. 2 has a 1D coordination chain structure formed by the double 1,5-dca bridged dinuclear [Cu2(1,5-dca)2(hmpH)2] unit and the 1,3-dca bridges via weak Cu–N coordination, and these 1D coordination chains are further extended into 2D hydrogen-bonded layers via strong O–HN hydrogen-bonding interaction between the hydroxyl groups and the noncoordinating nitrile ends. 3 is a 2D (4,4) coordination network made of 1D [Mn(hepH)(1,5-dca)] helical chain units and interchain double (1,5-dca) bridges. Pairs of [Mn(hepH)(1,5-dca)] helical chains are interlinked by the double (1,5-dca) bridges into a racemic coordination layer structure, which is further extended into a 3D hydrogen-bonded network. Magnetic studies reveal that weak antiferromagnetic exchange occurs in 3.

Publisher

Hindawi Limited

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synthesis, characterization, and antimicrobial of [Ni(2-ampy)2(dca)2];THE 4TH INTERNATIONAL CONFERENCE ON LIFE SCIENCE AND TECHNOLOGY (ICoLiST);2023

2. Synthesis, Crystal Structure, and Antimicrobial Properties of a Novel 1-D Cobalt Coordination Polymer with Dicyanamide and 2-Aminopyridine;International Journal of Inorganic Chemistry;2015-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3