Affiliation:
1. College of Electrical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
2. Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan
3. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Abstract
When a photovoltaic (PV) system is connected to the electric power grid, the power system reliability may be exposed to a threat due to its inherent randomness and volatility. Consequently, predicting PV power generation becomes necessary for reasonable power distribution scheduling. A hybrid model based on an improved bird swarm algorithm (IBSA) with extreme learning machine (ELM) algorithm, i.e., IBSAELM, was developed in this study for better prediction of the short-term PV output power. The IBSA model was initially used to optimize the hidden layer threshold and input weight of the ELM model. Further, the obtained optimal parameters were input into the ELM model for predicting short-term PV power. The results revealed that the IBSAELM model is superior in terms of the prediction accuracy compared to existing methods, such as support vector machine (SVM), back propagation neural network (BP), Gaussian process regression (GPR), and bird swarm algorithm with extreme learning machine (BSAELM) models. Accordingly, it achieved great benefits in terms of the utilization efficiency of whole power generation. Furthermore, the stability of the power grid was well maintained, resulting in balanced power generation, transmission, and electricity consumption.
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献