Low Rank Correlation Representation and Clustering

Author:

Gao Wenyun12ORCID,Dai Sheng1,Abhadiomhen Stanley Ebhohimhen3ORCID,He Wei4,Yin Xinghui2

Affiliation:

1. Nanjing LES Information Technology Co., Ltd., Nanjing, China

2. College of Computer and Information, Hohai University, Nanjing 211100, China

3. Department of Computer Science, University of Nigeria, Nsukka, Nigeria

4. North Information Control Research Academy Group Co., Ltd., Nanjing 211153, China

Abstract

Correlation learning is a technique utilized to find a common representation in cross-domain and multiview datasets. However, most existing methods are not robust enough to handle noisy data. As such, the common representation matrix learned could be influenced easily by noisy samples inherent in different instances of the data. In this paper, we propose a novel correlation learning method based on a low-rank representation, which learns a common representation between two instances of data in a latent subspace. Specifically, we begin by learning a low-rank representation matrix and an orthogonal rotation matrix to handle the noisy samples in one instance of the data so that a second instance of the data can linearly reconstruct the low-rank representation. Our method then finds a similarity matrix that approximates the common low-rank representation matrix much better such that a rank constraint on the Laplacian matrix would reveal the clustering structure explicitly without any spectral postprocessing. Extensive experimental results on ORL, Yale, Coil-20, Caltech 101-20, and UCI digits datasets demonstrate that our method has superior performance than other state-of-the-art compared methods in six evaluation metrics.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3