Function and Mechanism of Novel Histone Posttranslational Modifications in Health and Disease

Author:

Xu Huiwen123ORCID,Wu Maoyan123,Ma Xiumei234,Huang Wei123ORCID,Xu Yong123ORCID

Affiliation:

1. Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China

2. Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China

3. Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, 646000, China

4. Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China

Abstract

Histone posttranslational modifications (HPTMs) are crucial epigenetic mechanisms regulating various biological events. Different types of HPTMs characterize and shape functional chromatin states alone or in combination, and dedicated effector proteins selectively recognize these modifications for gene expression. The dysregulation of HPTM recognition events takes part in human diseases. With the application of mass spectrometry- (MS-) based proteomics, novel histone lysine acylation has been successively discovered, e.g., propionylation, butyrylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, malonylation, succinylation, crotonylation, glutarylation, and lactylation. These nine types of modifications expand the repertoire of HPTMs and regulate chromatin remodeling, gene expression, cell cycle, and cellular metabolism. Recent researches show that HPTMs have a close connection with the pathogenesis of cancer, metabolic diseases, neuropsychiatric disorders, infertility, kidney diseases, and acquired immunodeficiency syndrome (AIDS). This review focuses on the chemical structure, sites, functions of these novel HPTMs, and underlying mechanism in gene expression, providing a glimpse into their complex regulation in health and disease.

Funder

Department of Science and Technology of Sichuan Province

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3