Affiliation:
1. Mathematics Department, Pan African University (PAU), Nairobi 62 000 00 200, Kenya
2. Mathematics Department, Jomo Kenyatta University, Nairobi, Kenya
Abstract
This work shown as the fuzzy-EGARCH-ANN (fuzzy-exponential generalized autoregressive conditional heteroscedastic-artificial neural network) model does not require continuous model calibration if the corresponding DE algorithm is used appropriately, but other models such as GARCH, EGARCH, and EGARCH-ANN need continuous model calibration and validation so they fit the data and reality very well up to the desired accuracy. Also, a robust analysis of volatility forecasting of the daily S&P 500 data collected from Yahoo Finance for the daily spanning period 1/3/2006 to 20/2/2020. To our knowledge, this is the first study that focuses on the daily S&P 500 data using high-frequency data and the fuzzy-EGARCH-ANN econometric model. Finally, the research finds that the best performing model in terms of one-step-ahead forecasts based on realized volatility computed from the underlying daily data series is the fuzzy-EGARCH-ANN (1,1,2,1) model with Student’s t-distribution.
Subject
Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Civil and Structural Engineering,Computational Mechanics