Integrin-Linked Kinase (ILK) Regulates Urinary Stem Cells Differentiation into Smooth Muscle via NF-κB Signal Pathway

Author:

Huang Liang-liang1,Deng Jun-hong1ORCID,Xie Jing-xuan1,Lin Zi-bin1,Jiang Hui2,Ouyang Bin1,Liu Jian-ming1,Wei Yan-ni1,Cai Zhou-da1

Affiliation:

1. Department of Andrology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China

2. Department of Urology, Peking University Third Hospital, Andrology, Beijing 100191, China

Abstract

Objectives. Urinary stem cells (USCs) have the capacity for unlimited growth and are promising tools for the investigations of cell differentiation and urinary regeneration. However, the limited life span significantly restricts their usefulness. This study is aimed at exploring the effect of integrin-linked kinase (ILK) on the smooth muscle cells (SMCs) differentiation of the dog USCs and investigating its molecular mechanism. Methods. An immortalized USCs cell line with the molecular markers and biological functions was prepared. After successfully inducing the differentiation of USCs into SMCs, the expression level of the unique key factor and its mechanisms in this process was determined through real-time polymerase chain reaction, Western blot, or Immunofluorescence staining. Results. We found that high cell density promoted USCs differentiation SMCs, and ILK was necessary for USCs differentiation into SMCs. Knocking down ILK decreased the expression of SMCs specific-marker, while using a selective ILK agonist increased the expression of SMCs specific-marker. Furthermore, ILK regulated SMCs differentiation in part through the activation of NF-κB pathway in USCs. A NF-κB activity assay showed overexpression of ILK could significantly upregulate NF-κB p50 expression, and NF-κB p50 acts as downstream signal molecular of ILK. Conclusion. High cell density induces the differentiation of USCs into SMCs, and ILK is a key regulator of myogenesis. Furthermore, NF-κB signaling pathway might play a crucial role in this process.

Funder

Science Foundation of Guangzhou First People’s Hospital

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3