Improvement of Sensitivity of Pooling Strategies for COVID-19

Author:

Chen Hong-Bin1ORCID,Guo Jun-Yi2ORCID,Shu Yu-Chen3ORCID,Lee Yu-Hsun4ORCID,Chang Fei-Huang5ORCID

Affiliation:

1. Department of Applied Mathematics, National Chung Hsing University, Taichung 40249, Taiwan

2. Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan

3. Department of Mathematics, National Cheng Kung University, Tainan City 701, Taiwan

4. Graduate School of Informatics, Kyoto University, Japan

5. Division of Preparatory Programs for Overseas Chinese Students, National Taiwan Normal University, New Taipei City 24449, Taiwan

Abstract

Group testing (or pool testing), for example, Dorfman’s method or grid method, has been validated for COVID-19 RT-PCR tests and implemented widely by most laboratories in many countries. These methods take advantages since they reduce resources, time, and overall costs required for a large number of samples. However, these methods could have more false negative cases and lower sensitivity. In order to maintain both accuracy and efficiency for different prevalence, we provide a novel pooling strategy based on the grid method with an extra pool set and an optimized rule inspired by the idea of error-correcting codes. The mathematical analysis shows that (i) the proposed method has the best sensitivity among all the methods we compared, if the false negative rate (FNR) of an individual test is in the range [1%, 20%] and the FNR of a pool test is closed to that of an individual test, and (ii) the proposed method is efficient when the prevalence is below 10%. Numerical simulations are also performed to confirm the theoretical derivations. In summary, the proposed method is shown to be felicitous under the above conditions in the epidemic.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3