Affiliation:
1. School of Optoelectronic Engineering, Xi’an Technological University, Xian 710048, China
2. School of Physics and Electronic Engineering, Xianyang Normal University, Xian 710048, China
Abstract
Meteorological forecasting can not only reduce the losses caused by natural disasters to human society but also has a very important significance in the fields of water conservancy, aviation, and transportation. In order to improve the accuracy of meteorological forecasting, we should focus on the in-depth optical analysis of atmospheric cloud distribution. Compared with forward-scattered laser light, backscattered laser light can save more optical information. Therefore, this paper studies the backscattering of polarized laser light distributed in atmospheric clouds. In this study, a simulated annealing algorithm was used to invert the data of spaceborne lidar to obtain the depolarization degree and backscattering coefficient of atmospheric clouds and aerosols at different heights. Finally, based on the radar measurement example, the simulated annealing algorithm was used to analyze the atmospheric information of sunny, cloudy, and hazy weather in summer and winter, and the atmospheric depolarization and backscattering coefficients corresponding to different weather heights were obtained. The corresponding cloud layer type was judged. The research results prove the feasibility of the simulated annealing algorithm in the study of polarized laser backscattering in atmospheric cloud distribution. This study provides new ideas for radar data processing methods and provides a theoretical basis for further research in the field of meteorological forecasting.
Funder
Education Department of Shaanxi Province
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献