Vibration Characteristics of Rolling Mill System under Constraints of the Nonlinear Spring Force and Friction Force from Hydraulic Cylinder

Author:

Liu Zhaolun1ORCID,Pan Guixiang2,Jiang Jiahao1,Liu Bin2

Affiliation:

1. School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China

2. School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China

Abstract

Considering the two kinds of nonlinear constraints of rolling mill hydraulic cylinder, spring force and friction force, the vibration model of rolling mill system is established. The amplitude frequency response equations are obtained by using the average method. Comparing the time history curves of vertical vibration displacement of rolling mill system under the nonlinear spring force and friction force, the amplitude frequency characteristic curves are simulated. The external excitation amplitude is viewed as the bifurcation parameter, and the system bifurcation response changing with the external excitation amplitude is analyzed. The influence of the external excitation amplitude on the system stability is studied. The results indicate that the increase of the nonlinear spring force makes the rolling mill system’s unstable area to become wider, and the influence on the rolling mill system of nonlinear friction force behaves as the damping characteristics; the vibration of rolling mill system is alternating between the periodic, period-doubling, and the chaotic motion. The research results provide a theoretical support for restraining the vibration of the rolling mill system in the actual production process.

Funder

Natural Science Foundation of Hebei Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3