SHANK3 Genotype Mediates Speech and Language Phenotypes in a Nonclinical Population

Author:

Manning Christina1,Hurd Peter L.2,Read Silven1,Crespi Bernard1ORCID

Affiliation:

1. Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada

2. Department of Psychology and Centre for Neuroscience, University of Alberta, Edmonton, Canada

Abstract

Mutations affecting the synaptic-scaffold gene SHANK3 represent the most common genetic causes of autism with intellectual disability, accounting for about 1-2% of cases. Rare variants of this gene have also been associated with schizophrenia, and its deletion results in the autistic condition known as Phelan–McDermid syndrome. Despite the importance of SHANK3 as a paradigmatic gene mediating neurodevelopmental disorders, its psychological effects in nonclinical populations have yet to be studied. We genotyped the nonsynonymous, functional SHANK3 SNP rs9616915 in a large population of typical individuals scored for autism spectrum traits (the Autism Quotient, AQ) and schizotypy spectrum traits (the Schizotypal Personality Questionnaire, SPQ-BR). Males, but not females, showed significant genotypic effects for the SPQ-BR subscale associated with speech and language: Odd Speech. These findings, in conjunction with animal model studies showing vocalization and auditory effects of SHANK3 mutations, and studies indicating severe language alterations and speech-associated white matter tract abnormalities in Phelan–McDermid syndrome, suggest that SHANK3 differentially affects the development and expression of human language and speech. Imaging genetic and speech-language studies of typical individuals carrying different genotypes of rs9616915 should provide novel insights into the neurological and psychological bases of speech and language alterations among individuals with SHANK3 mutations and Phelan–McDermid syndrome.

Funder

Natural Resources and Engineering Research Council of Canada

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decoding the genetic landscape of autism: A comprehensive review;World Journal of Clinical Pediatrics;2024-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3