Affiliation:
1. Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
2. Haemato-oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, MVLS, University of Glasgow, UK
Abstract
The study was aimed at analyzing the protective effects of gintonin in an amyloid beta- (Aβ-) induced Alzheimer’s disease (AD) mouse model. For the development of the Aβ-induced AD mouse model, the amyloid-β (Aβ1-42) peptide was stereotaxically injected into the brains of mice. Subsequently, gintonin was administered at a dose of 100 mg/kg/day/per oral (p.o) for four weeks daily, and its effects were evaluated by using western blotting, fluorescence analysis of brain sections, biochemical tests, and memory-related behavioral evaluations. To elucidate the effects of gintonin at the mechanistic level, the activation of endogenous antioxidant mechanisms, as well as the activation of astrocytes, microglia, and proinflammatory mediators such as nuclear factor erythroid 2-related factor 2 (NRF-2) and heme oxygenase-1 (HO-1), was evaluated. In addition, microglial cells (BV-2 cells) were used to analyze the effects of gintonin on microglial activation and signaling mechanisms. Collectively, the results suggested that gintonin reduced elevated oxidative stress by improving the expression of NRF-2 and HO-1 and thereby reducing the generation of reactive oxygen species (ROS) and lipid peroxidation (LPO). Moreover, gintonin significantly suppressed activated microglial cells and inflammatory mediators in the brains of Aβ-injected mice. Our findings also indicated improved synaptic and memory functions in the brains of Aβ-injected mice after treatment with gintonin. These results suggest that gintonin may be effective for relieving AD symptoms by regulating oxidative stress and inflammatory processes in a mouse model of AD. Collectively, the findings of this preclinical study highlight and endorse the potential, multitargeted protective effects of gintonin against AD-associated oxidative damage, neuroinflammation, cognitive impairment, and neurodegeneration.
Funder
National Research Foundation of Korea
Subject
Cell Biology,Aging,General Medicine,Biochemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献