Information Transfer and Multifractal Analysis of EEG in Mild Blast-Induced TBI

Author:

Zorick Todd1ORCID,Gaines Katy D.2,Berenji Gholam R.3,Mandelkern Mark A.34,Smith Jason5

Affiliation:

1. Department of Psychiatry, Harbor-UCLA Medical Center and UCLA Geffen School of Medicine, USA

2. Neuro Health Inc, University of California, Irvine, USA

3. Greater Los Angeles VA Department of Nuclear Imaging, University of California, Irvine, USA

4. Department of Physics, University of California, Irvine, USA

5. The Boeing Company, USA

Abstract

Mild, blast-induced traumatic brain injury (mbTBI) is a common combat brain injury characterized by typically normal neuroimaging findings, with unpredictable future cognitive recovery. Traditional methods of electroencephalography (EEG) analysis (e.g., spectral analysis) have not been successful in detecting the degree of cognitive and functional impairment in mbTBI. We therefore collected resting state EEG (5 minutes, 64 leads) from twelve patients with a history of mbTBI, along with repeat neuropsychological testing (D-KEFS Tower test) to compare two new methods for analyzing EEG (multifractal detrended fluctuation analysis (MF-DFA) and information transfer modeling (ITM)) with spectral analysis. For MF-DFA, we extracted relevant parameters from the resultant multifractal spectrum from all leads and compared with traditional power by frequency band for spectral analysis. For ITM, because the number of parameters from each lead far exceeded the number of subjects, we utilized a reduced set of 10 leads which were compared with spectral analysis. We utilized separate 30 second EEG segments for training and testing statistical models based upon regression tree analysis. ITM and MF-DFA models both generally had improved accuracy at correlating with relevant measures of cognitive performance as compared to spectral analytic models ITM and MF-DFA both merit additional research as analytic tools for EEG and cognition in TBI.

Funder

Veterans Administration Career Development Award

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3