Threshold-Optimized Swarm Decomposition Using Grey Wolf Optimizer for the Acoustic-Based Internal Defect Detection of Arc Magnets

Author:

Huang Qinyuan12ORCID,Li Qiang1ORCID,Ran Maoxia1ORCID,Liu Xin1ORCID,Zhou Ying1ORCID

Affiliation:

1. School of Automation and Information Engineering, Sichuan University of Science & Engineering, Zigong 643000, China

2. Artificial Intelligence Key Laboratory of Sichuan Province, Zigong 643000, China

Abstract

The acoustic-based internal defect detection is essential to ensure the quality of arc magnets efficiently. Swarm decomposition (SWD) is conducive to processing acoustic signals, but it is still confronted with threshold optimization problems. Especially, the existing optimization methods for the SWD thresholds are merely available for a single signal with exclusive characteristics, instead of the various signals with similar characteristics. Therefore, a threshold-optimized SWD using grey wolf optimizer (GWO) is proposed to solve these issues and applied to detect the internal defects of arc magnets. In this method, a fitness function is designed to indicate the relationship between the SWD thresholds and the overall decomposition effect of similar signals. The minimum value of it corresponds to the threshold setting yielding the optimal decomposition. GWO is used for searching such a minimum value, and the obtained optimal threshold setting allows SWD to decompose any signal into a series of oscillatory components. The frequency information in the two oscillatory components with the highest energy ratio is extracted as the internal defect features. Random forest is carried out to identify these features. Experimentally, the detection accuracy reaches above 97%, and the detection speed per single arc magnet does not exceed 3.4 seconds. The proposed method cannot only determine the unified threshold setting of SWD for similar signals but also achieve an accurate, rapid detection for the internal defects.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3