Identifying the Thermal Storage Stability of Polymer-Modified Asphalt with Carbon Nanotubes Based on Its Macroperformance and Micromorphology

Author:

Liu Xi-yin1ORCID,Wang Peng1ORCID,Lu Yu2,Zhang Tian-tao2,Wang Li-zhi1,Wang Tong-fu2

Affiliation:

1. School of Transportation Engineering, Shandong Jianzhu University, Jinan, Shandong 250101, China

2. Construction Management Branch, Shandong Hi-Speed Group Co. Ltd., Jinan, Shandong 250101, China

Abstract

The thermal storage stability of polymer-modified asphalt (PMA) is the key to avoid performance attenuation during storage and transportation in pavement engineering. However, phase separation of PMA continuously occurs after long-term thermal storage due to the overlooked influence of the phase interface. Two kinds of carbon nanotubes (CNTs) and styrene-butadiene-styrene triblock copolymer (SBS) were selected in this paper to address the aforementioned issue. The segregation test was used to simulate the long-term storage process from 0 to 10 days. Macroperformance included the softening point difference (△SP), irrecoverable compliance (Jnr), recovery rate (R%), and complex modulus (G∗) measured by the softening point test, multistress creep recovery (MSCR) test, and small strain oscillatory rheological test. Microcharacteristics were obtained by the SBS characteristic peak index, SBS-rich phase distribution, polymer swelling degree, and particle characteristics of the SBS-rich phase. They were measured by Fourier-transformed infrared spectroscopy (FT-IR), fluorescence microscopy (FM), and atomic force microscopy (AFM), respectively. Results showed that the optimum CNT amount necessary to obtain an improved thermal storage stability of PMA was 0.5 wt.%. After 10 days of storage, the largest R% of SBS modified asphalt (SBSMA) decreased to 2.24% and the smallest Jnr increased to 0.069 1/kPa, while R% of SBSMA with CNTs was 62.15% and its Jnr was 0.013 1/kPa. R% and Jnr of SBSMA with CNTs showed almost no change after 6 days of storage, implying an effective antirutting performance. The results from the microperformance investigation showed that phase separation of SBS mainly occurred on day 4, while SBS degradation and base asphalt aging led to the worse macroperformance after 10 days of storage. Additional CNTs restrained the SBS-rich phase from floating upward. Meanwhile, a small size of polymer-rich phase and dense network of SBSMA with CNTs were observed in fluorescence microscopy and atomic force microscopy images, thereby exhibiting improved thermal storage stability. Adding CNTs would retard the segregation due to CNT entanglement with SBS.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3