Numerical Analyses of Static Characteristics of Liquid Annular Seals Based on 2D LBM-LES Model

Author:

Zhang Zhenjie1,Zhai Lulu12ORCID,Guo Jia3,Zhu Zuchao1,Chen Guoyou2

Affiliation:

1. State-Province Joint Engineering Lab of Fluid Transmission System Technology, Zhejiang Sci-Tech University, 928# No. 2 Avenue, Xiasha, Hangzhou, China

2. Zhejiang Keer Pump Co., Ltd., Wenzhou, China

3. Zhejiang Institute of Mechanical & Electrical Engineering Co., Ltd., Hangzhou, China

Abstract

Static characteristics and leakage flow rates of liquid annular seals have great influences on the hydraulic efficiency of turbomachinery. In this paper, a two-dimensional (2D) mathematical model for predicting the leakage flow rates and static characteristics of liquid seal is established, based on the lattice Boltzmann method (LBM) combined with the D2G9 velocity model for incompressible fluid and large eddy simulation (LES) turbulence model, in which the transformation equation of reference pressure is developed with the Bernoulli equation. Moreover, the proposed model is validated by comparing with the experimental results, calculation results based on the finite volume method (FVM), and the results based on the empirical method of three seals under different operating conditions. The comparisons show that the maximum deviation in leakage prediction of the calculating model based on 2D LBM is 4%, and this calculating model will effectively improve the leakage prediction accuracy of the seals compared with the FVM and theoretical method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference35 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3