Seismic Optimization of High Cantilever Multianchor Pile Strengthening Soil Slopes against Earthquakes

Author:

Wu Honggang1,Pai Lifang12ORCID,Lei Hao1ORCID

Affiliation:

1. Northwest Research Institute Co., Ltd of C.R.E.C, Lanzhou, Gansu 730000, China

2. China Academy of Railway Sciences, Beijing 100081, China

Abstract

To explore the optimal seismic performance of multianchor pile, we carried out a series of shaking table tests. Based on the special form of multianchor piles’ reinforcement, we put forward the optimal design scheme of using EPS foam as damping layers and energy-dissipation springs for improving the self-coordinating devices of anchor head. By measuring acceleration and dynamic soil-pressure response under different intensities of vibration, we analyzed the correlation between acceleration caused by seismic wave action and damage characterized by time-domain and spectral characteristics of dynamic soil-pressure. We discuss in detail the relationship between frequency and specific period of dynamic soil-pressure and acceleration. We then used the SPECTR program to calculate the energy spectrum. Under the reciprocating action of seismic waves of different intensities, our slope model showed the continuous effect of spatial coupling deformation leading to regional damage and failure. Furthermore, the spatial distribution for amplitude of acceleration and dynamic soil-pressure showed the outstanding response of lateral amplitude of pile structures without optimization. The energy-spectrum distribution of acceleration seismic input was orderly, while the dynamic soil-pressure distribution of piles was disordered. Low-frequency (≤10 Hz) seismic waves have a great influence on these structures. The difference of acceleration hysteresis along the elevations was mainly caused by the propagation stage after the main earthquake. The correlation between dynamic soil-pressure and acceleration response in each group before the pile occurred in the same earthquake area was very weak, showing a low correlation. The optimization effect of optimized structures is related to the position of the shock-absorbing layer. Under high acceleration, multianchor piles easily cause bulge failures or shear failures at the positions of sliding surfaces. These results are helpful for improvements to reliably optimize designs in pile structure dynamic parameters.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3