Modeling Acceleration and Deceleration Rates for Two-Lane Rural Highways Using Global Positioning System Data

Author:

Malaghan Vinayak12ORCID,Pawar Digvijay S.1ORCID,Dia Hussein2ORCID

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Medak 502285, India

2. Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne 3122, Australia

Abstract

Several past studies developed acceleration/deceleration rate models as a function of a single explanatory variable. Most of them were spot speed studies with speeds measured at specific locations on curves (usually midpoint of the curve) and tangents to determine acceleration and deceleration rates. Fewer studies adopted an estimated value of 0.85 m/s2 for both deceleration and acceleration rates while approaching and departing curves, respectively. In this study, instrumented vehicles with a high-end GPS (global positioning system) device were used to collect the continuous speed profile data for two-lane rural highways. The speed profiles were used to locate the speeds at the beginning and end of deceleration/acceleration on the successive road geometric elements to calculate the deceleration/acceleration rate. The influence of different geometric design variables on the acceleration/deceleration rate was analysed to develop regression models. This study also inspeced the assumption of constant operating speed on the horizontal curve. The study results indicated that mean operating speeds measured at the point of curvature (PC) or point of tangency (PT), the midpoint of curve (MC), and the end of deceleration in curve were statistically different. Acceleration/deceleration rates as a function of different geometric variables improved the accuracy of models. This was evident from model validation and comparison with existing models in the literature. The results of this study highlight the significance of using continuous speed profile data to locate the beginning and end of deceleration/acceleration and considering different geometric variables to calibrate acceleration/deceleration rate models.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3