Affiliation:
1. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 20093, China
Abstract
An important goal of indoor positioning systems is to improve positioning accuracy as well as reduce power consumption. In this paper, we propose an indoor positioning method based on the received signal strength (RSS) fingerprint. The proposed method used a certain criterion to select fixed access points (FPs) in an offline phase instead of an online phase for location estimation. Principal component analysis (PCA) was applied to reduce the features of the RSS measurements but retain the most information possible for establishing the positioning model. Then, a kernel-based ridge regression method was used to obtain the nonlinear relationship between the principal components of the RSS measures and the position of the target. We thoroughly investigated the performance of the proposed method in realistic wireless local area network (WLAN) and wireless sensor network (WSN) indoor environments and made comparisons with recently developed methods. The experimental results indicated that the proposed method was less dependent on the density of the reference points and had higher positioning accuracy than the commonly used positioning methods, and it adapts to different application environments.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献