Exploiting Chirp Rate Estimation Methods to Improve Image Formation Quality of Synthetic Aperture Radar

Author:

Rabiee N.1ORCID,Azad H.1ORCID,Parhizgar N.1ORCID

Affiliation:

1. Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran

Abstract

A common assumption in SAR image formation and processing algorithms is that the chirp rates of the transmitted and received radar signals are exactly the same. Dechirp processing is also done based on this common assumption. In real scenarios, the chirp rate of the received signal is different from that of the transmitted signal due to several reasons. In case the difference between the chirp rates of the transmitted and received signals is obvious, the demodulation and compression of the received pulse are not carried out precisely and defocusing the targets and the output images of the SAR processor results. In the present paper, a new technique is proposed to improve the image formation quality of SAR by exploiting chirp rate estimation methods. Based on the proposed technique, the chirp rate of the received signal is estimated, and then, dechirp is carried out by using a time-reversed complex conjugate filter constructed based on the estimated chirp rate. In this stage, the existing chirp rate estimation algorithms can be used. The quality of the output image is assessed using PSLR as a quantitative criterion and the average number of point target extension pixels along the azimuth direction. Simulation results indicated that the smaller the average number of point target extension pixels along with azimuth and the higher the PSLR average is, the better the output image quality would be. Therefore, output images obtained from the proposed method by exploiting chirp rate estimation algorithms would have a better quality with a higher PSLR average (14.1 and 13.6) and also the lower average number of point target extension pixels along the azimuth directions (2.1 and 4.9) than the common method with PSLR average (8.3) and an average number of point target extension pixels along the azimuth direction (7.1).

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3