Affiliation:
1. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
2. Hefei University of Technology (Maanshan) High-Technology Institute, Maanshan 243000, China
Abstract
In the process of modular product configuration, it is necessary to transform customer requirements into product module attributes (PMA) parameters. However, previous research lacks consideration about customer requirement preference in the process of this transformation. First, we use a preference graph (PG) to obtain the customer preference weight vector for the requirement node. Second, on the basis of traditional Quality Function Deployment (QFD), the method of fuzzy correlation evaluation is introduced to get the correlation value between module attributes, and the combination programming model of PMA is further obtained by synthesizing the preference weight vector. Finally, the final configuration scheme is obtained by solving the model with the genetic algorithm. By integrating the weights of the above-mentioned nodes, the similarity of the product case is obtained, and a more satisfied case of the customer is obtained. Taking the automated guided vehicle car product as an example, the effectiveness and practicability of the proposed method are verified.
Subject
General Engineering,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献