Networking of Smart Meters Based on Time-Varying Feature of Low-Voltage Power Line Channel in Microgrid

Author:

Huang Ya-Xin1ORCID,Zhang Xiao-Di2ORCID,Yu Fei1,Wei Yong-Qing1,Zhang Hai-Long3

Affiliation:

1. College of Electrical Engineering, Naval University of Engineering, Wuhan 430072, China

2. State Grid Beijing Electric Maintenance Company, Beijing 100080, China

3. General Construction Company of CCTEB Group Co., Ltd., Wuhan 430064, China

Abstract

In order to manage the electricity consumption information of microgrid users, the reliability of electricity information collection is studied in this paper. The normal communication between the acquisition terminal and the smart meter is a key factor affecting the accurate collection of power information; it is the basis for ensuring the operation of the microgrid as well. In order to improve the reliability of the low power line communication between the acquisition terminal and smart meters, this article first uses the static networking method to layer the smart meters and select relays from them and then select the optimal communication path based on integrating communication quality and relay forwarding number dynamically, which could avoid the signal conflict problem caused by simultaneous communication. Finally, by analyzing the influence of the time-varying power line channel on the smart meter communication, a method based on the integrated communication quality and the relay number to consider the time variability of low power line communication is proposed. Choosing the optimal path of the smart meters when the communication path is abnormal can not only establish a new communication path for communication in time, but also avoid communication failures caused by the time-varying channel. Through MATLAB simulation, the time-varying dynamic network of the power line channel is introduced in this paper, which improves the reliability of the smart meter communication and has certain guiding significance for the actual smart meter network construction in microgrid.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3