Affiliation:
1. Key Laboratory of Western China’s Mineral Resource and Geological Engineering, Ministry of Education, Chang’an University, Xi’an 710054, China
2. School of Geology Engineering and Geomatiocs, Chang’an Unviersity, Xi’an 710054, China
3. College of Civil Engineering, Hunan University, Changsha 410082, China
Abstract
The stress-dependent K0, Vs, and Vs anisotropy and their correlations with sand for 1D consolidation stress were tested with a custom-designed floating-wall consolidometer-type Bender Element (BE) testing apparatus. K0 of a soil sample was calculated using stress measurements through soil pressure transducers installed at the midsection of the consolidometer. The Vs and Vs anisotropy were measured by the bender elements installed in three orthogonal directions in the consolidometer, i.e., vh, hv, and hh. Granular soils with different sizes and shapes were tested. The effects of the stress level, overconsolidation ratio (OCR), particle size and shape on the Vs anisotropy, and K0 of the granular soils during one-dimensional consolidation were investigated. The laboratory investigations suggested (1) the K0 showed a constant value during loading, while it increased as the OCR increased during unloading, (2) soils with smaller particle sizes, rough surfaces, and angular geometry tended to have a lower value of K0, and vice versa, (3) both the anisotropic stress state and the anisotropic fabric (geometry) could lead to the Vs anisotropy, but the Vs anisotropy was manifested due to the horizontal stress-lock during unloading stage, and (4) the published correlation between Vs and K0 was modified by introducing the influence of the OCR, which could effectively reduce the variation and improve the prediction accuracy. Therefore, the modified correlation could be used as a robust approach to estimate K0 for both normally consolidated and highly overly consolidated granular soils.
Funder
National Natural Science Foundation of China
Subject
Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献