Performance Evaluation of Layered Double Hydroxides Containing Benzotriazole and Nitrogen Oxides as Autonomic Protection Particles against Corrosion

Author:

Pellanda Alana Cristine1ORCID,Neto Alexandre Gonçalves Cordeiro1ORCID,Carvalho Jorge Agne Roani de1ORCID,Berton Marcos Antonio Coelho1ORCID,Floriano João Batista2ORCID,Thomas Sabu345,Vijayan P Poornima6

Affiliation:

1. SENAI Innovation Institute for Electrochemistry, Av. Comendador Franco 1341, Curitiba, Brazil

2. Universidade Tecnológica Federal do Paraná, R. Deputado Heitor Alencar Furtado 5000, Curitiba-, Brazil

3. International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India

4. School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India

5. School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala, India

6. Sree Narayana College for Women (Affiliated to University of Kerala), 691001, Kollam, Kerala, India

Abstract

Layered double hydroxides (LDH) are lamellar structures with positively charged laminates and charge-compensating interlayer anions. The ion-exchange capacity of LDHs makes them as promising hosts for corrosion inhibitor anions with stimulus-responsive release and self-healing anticorrosion. In the current work, LDHs loaded with two different corrosion inhibitors (nitrogen oxides and benzotriazole) were evaluated for their ion-exchange capacity and autonomic protection against corrosion on carbon steel. Studies on nitrogen oxide-loaded LDH (NOx-LDH) showed that nitrogen oxides were successfully intercalated in LDH structure, which were released in chloride media. Open Circuit Potential (OCP) results showed that NOx-LDH extract shifted OCP to nobler values, indicating the protection of metal. For benzotriazole-loaded LDH (BTZ-LDH), the results indicated the presence of benzotriazole in the structure, but its release was not observed. OCP results showed no significant increase of carbon steel protection, corroborating with the conclusion that benzotriazole ions did not migrate to metal surface. Considering these results, the insertion of NOx-LDH in an automotive primer was proceeded, under three different concentrations (0.2. 1.0, and 3.0%). Electrochemical impedance spectroscopy (EIS) showed that the more effective NOx-LDH concentration on corrosion delay was 0.2%, which better balanced protection level conferred by LDH with a possible loss on effectiveness of coating due to increase in porosity.

Publisher

Hindawi Limited

Subject

Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3