IL-1 Receptor Antagonist Protects the Osteogenesis Capability of Gingival-Derived Stem/Progenitor Cells under Inflammatory Microenvironment Induced by Porphyromonas gingivalis Lipopolysaccharides

Author:

Zhao Yuxin1ORCID,Cai Bobo1ORCID,Zhu Weijun1ORCID,Shi Jue1ORCID,Wang Yu1ORCID,Si Misi1ORCID

Affiliation:

1. The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang 310006, China

Abstract

Mesenchymal stem cells (MSCs) have been considered to be a future treatment option for periodontitis due to their excellent regenerative capability. However, it is still a challenge to protect MSCs’ biological properties from multiple bacterial toxins in local inflammatory environment. The present study is aimed at investigating the treatment effect of interleukin-1 receptor antagonist (IL-1ra) on cell proliferation, migration, and osteogenic differentiation of gingival-derived mesenchymal stem cells (GMSCs) under an inflammatory microenvironment induced by Porphyromonas gingivalis lipopolysaccharides (P. gingivalis-LPS). GMSCs derived from Sprague-Dawley (SD) rats’ free gingival tissues were treated with P. gingivalis-LPS (10 μg/mL) to create in vitro inflammatory environment. Different concentrations of IL-1ra (0.01-1 μg/mL) were used to antagonize the negative effect of LPS. Cell behaviors including proliferation, cloning formation unit (CFU), cell migration, osteogenic differentiation, mineral deposition, and cytokine production were assessed to investigate the protection effect of IL-1ra on GMSCs under inflammation. The toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) pathway activated by LPS was evaluated by real-time quantitative polymerase chain reaction (RT-PCR) and western blot. In response to P. gingivalis-LPS treatment, cell numbers, cloning formation rate, cell migration rate, proinflammatory cytokine production, and osteogenic differentiation-associated protein/mRNA expressions as well as mineralized nodules were suppressed in a time-dependent manner. These negative effects were effectively attenuated by IL-1ra administration in a time- and dose-dependent manner. In addition, mRNA expressions of TLR4 and IkBα decreased dramatically when IL-1ra was added into LPS-induced medium. IL-1ra also reversed the LPS-induced TLR4/NF-κB activation as indicated by western blot. The present study revealed that IL-1ra decreased inflammatory cytokine production in a supernatant, so as to protect GMSCs’ osteogenesis capacity and other biological properties under P. gingivalis-LPS-induced inflammatory environment. This might be explained by IL-1ra downregulating TLR4-mediated NF-κB signaling pathway activation.

Funder

Department of Health of Zhejiang Province

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Reference32 articles.

1. Porphyromonas gingivalis: major periodontopathic pathogen overview;J. Mysak;Journal of immunology research,2014

2. Porphyromonas gingivalis-derived lipopolysaccharide combines hypoxia to induce caspase-1 activation in periodontitis;R. Cheng;Frontiers in cellular and infection microbiology,2017

3. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen

4. Contributions of bioactive molecules in stem cell-based periodontal regeneration;A. Q. Liu;International journal of molecular sciences,2018

5. An in vivo swine study for xeno-grafts of calcium sulfate-based bone grafts with human dental pulp stem cells (hDPSCs)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3