Experimental Studies on Physicochemical Parameters of Water Samples before and after Treatment with a Cold Atmospheric Plasma Jet and its Optical Characterization

Author:

Baniya Hom Bahadur12ORCID,Guragain Rajesh Prakash1ORCID,Panta Gobinda Prasad1ORCID,Dhungana Santosh1ORCID,Chhetri Ganesh Kuwar1ORCID,Joshi Ujjwal Man1ORCID,Pandey Bishnu Prasad3ORCID,Subedi Deepak Prasad1ORCID

Affiliation:

1. Department of Physics, School of Science, Kathmandu University, Dhulikhel, Nepal

2. Department of Physics, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal

3. Department of Chemical Science and Engineering, Kathmandu University, Kavre, Dhulikhel, Nepal

Abstract

Cold plasma-liquid interaction becomes a growing interdisciplinary area of research involving plasma physics, fluid science, and chemistry. Plasma-liquid interaction has gained more interest over the last many years due to its potential applications in different fields. Cold atmospheric plasma jet is an emerging technology for surface drinking water treatment to improve quality and surface modification that is chemical-free and eco-friendly. Cold plasma treatment of water samples results in changes in turbidity, pH, and conductivity and in the formation of reactive oxygen and nitrogen species (RONS). As a result, plasma-activated water has a different chemical composition than water and can serve as an alternative technique for microbial disinfection. CAPJ has been generated by a high voltage 5 kV and a high frequency 19.56 kHz power supply. The discharge has been characterized by an optical method. To characterize the cold atmospheric pressure argon plasma jet, discharge plume temperature, and electron rotational and vibrational temperature have been determined. Cold atmospheric argon plasma jet produced at atmospheric condition contains high energetic electrons, ions, UV radiation, reactive oxygen, and nitrogen species named as cold plasma which has a wide range of applications in the biomedical industry, as well as in water treatment. Nowadays, researches have been carried out on ozonation through plasma jet interaction with surface drinking water. In this paper, we compare the change in physical and chemical parameters of surface water used for drinking purposes. The significant change in the physical parameters such as pH, turbidity, and electrical conductivity was studied. In addition, the significant changes in the concentration and absorbance of nitrate, ferrous, and chromium ions with respect to treatment time were studied. Our results showed that plasma jet interaction with surface drinking water samples can be useful for the improvement of water quality and an indicator for which reactive species play an important role in plasma sterilization.

Funder

Nepal Academy of Science and Technology

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3