Abstract
A mathematical model is described to investigate the damping moment of weakly nonlinear roll and yaw motions of a floating body in time domain under the action of sinusoidal waves. The mathematical formulation for added mass moment of inertia and damping is presented by approximating time-dependent coefficients and forcing moments when small distortion holds. Using perturbation technique, we obtain orderwise equations wherein the closed-form solution is obtained for zeroth-order case, and for higher-order cases we resort to numerical integration using Runge-Kutta method with adaptive step-size algorithm. In order to analyze the model result, we perform numerical experiment for a vessel of 19190 tons under the beam wave of 1 m height and frequency 0.74 rad/s. Closer inspection in damping analysis reveals that viscous effect becomes significant for roll damping; whereas for yaw damping, contribution from added mass variation becomes significant.
Subject
General Engineering,General Mathematics