Effect of Isothermal Treatment on Microstructure and Mechanical Properties of Cold-Deformed IF Steel

Author:

Reyes Barragan Jose Luis1ORCID,Rodriguez Diaz Roberto Ademar2ORCID,Ojeda Martinez Maria Luisa1ORCID,Gaona Jimenez Silvia3,Juarez Islas Julio Alberto4

Affiliation:

1. Research Centre of Nanoscience and Nanotechnology – Guadalajara University, Jalisco 46600, Mexico

2. Technologic of Superior Studies of Coacalco, Subdirection of Professional Studies “A”, Coacalco de Berriozábal 55700, Mexico

3. Polytechnic University of Morelos State, Jiutepec 62574, Mexico

4. Materials-Research Institute, National University Autonomous of Mexico, Coyoacán 04510, Mexico

Abstract

In this study, we investigated the recrystallisation kinetics of Ti-stabilised interstitial-free (IF) steel manufactured by the Mexican steel industry through the route of electric arc furnace with vacuum degassing, secondary refining, and subsequent continuous casting. The IF steel was hot-rolled at 950°C and then cold-rolled until deformation of 94% was attained, followed by recrystallisation at different times at a constant temperature of 780°C. In addition, the mechanical properties of the IF steel were assessed as a function of recrystallisation time. The results obtained from the mechanical property tests were presented in the form of plots of microhardness, yield strength, ultimate tensile stress, and deformation percent as functions of the recrystallised fraction with an indirect dependence on recrystallisation time. A graphical model of the recrystallisation behaviour showed the evolution of the microstructure, including phase transformations, hardness, and the mechanical properties determined from the tensile tests. In view of subsequent recovery and recrystallisation, stored energy analysis derived from the strain induced by deformation was presented. Furthermore, we determined the precipitates formed in the different processing stages of IF steel.

Funder

PROINPEP

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3