Weyl-Titchmarsh Theory for Hamiltonian Dynamic Systems

Author:

Sun Shurong12,Bohner Martin2,Chen Shaozhu3

Affiliation:

1. School of Science, University of Jinan, Jinan, Shandong 250022, China

2. Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409-0020, USA

3. Department of Mathematics, Shandong University in Weihai, Weihai, Shandong 264209, China

Abstract

We establish the Weyl-Titchmarsh theory for singular linear Hamiltonian dynamic systems on a time scale𝕋, which allows one to treat both continuous and discrete linear Hamiltonian systems as special cases for𝕋=and𝕋=within one theory and to explain the discrepancies between these two theories. This paper extends the Weyl-Titchmarsh theory and provides a foundation for studying spectral theory of Hamiltonian dynamic systems. These investigations are part of a larger program which includes the following: (i)M(λ)theory for singular Hamiltonian systems, (ii) on the spectrum of Hamiltonian systems, (iii) on boundary value problems for Hamiltonian dynamic systems.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,Analysis

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SPECTRAL MATRIX FOR STURM–LIOUVILLE OPERATORS ON TWO-SIDED UNBOUNDED TIME SCALES;Journal of Operator Theory;2103-07-24

2. Eigenvalue problems for a class of Sturm-Liouville operators on two different time scales;Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics;2022-09-30

3. Boundary‐value problem for a class of second‐order parameter‐dependent dynamic equations on a time scale;Mathematical Methods in the Applied Sciences;2020-01-15

4. Ambarzumyan-type theorems on a time scale;Journal of Inverse and Ill-posed Problems;2018-10-01

5. Classification and criteria of limit cases for singular second-order linear equations with complex coefficients on time scales;Advances in Difference Equations;2016-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3